Introduces the physics of the ocean. Topics include physical properties of seawater, atmospheric forcing, Ekman dynamics, Sverdrup dynamics, the wind-driven ocean circulation, ocean mixing, water masses, the meridional overturning circulation, surface gravity waves, Rossby waves, Kelvin waves, and ocean tides. Designed for beginning graduate students in ocean sciences and upper-division science majors. Calculus and physics recommended as preparation.
Instructor
Jerome Fiechter, Christopher Edwards
Covers advanced topics and physical principles as they relate to the ocean circulation. Designed as a follow-on class for OCEA 200, Physical Oceanography, and topics covered include: the dynamics of the subtropical gyres; potential vorticity dynamics; ventilated thermocline theory; the abyssal circulation; barotropic and baroclinic instability; and ocean eddies. Students use simple computer models to explore these important topics further, and review seminal papers.
Introduction to the dynamics of the Earth climate system. Topics: climate system components, the global energy balance, radiative transfer, the hydrological cycle, general circulations of the atmosphere and ocean, El Nino, the North Atlantic Oscillation, and the Pacific Decadal Oscillation.
Overview of biogeochemical cycles, present and past, and geochemical models. Topics include: marine, terrestrial, and global views of the carbon, nitrogen, phosphorus, silicon, sulfur, and oxygen cycles, and the evolution of these cycles and Earth's redox balance through geologic time.
Cross Listed Courses
EART 213
Instructor
Matthew McCarthy, Carl Lamborg
Introduction to the theory and practice of operational prediction in meteorology, oceanography, and climate. Topics: observations and estimation theory, dynamic adjustment and initialization, estimation theory, data assimilation, forecast verification, predictability, ocean state estimation, seasonal forecasting.
Recent developments in the study of marine bacteria and their role in the marine ecosystem. Emphasis on biochemistry and physiology in relation to metabolic activity and elemental cycles, trophic interactions and flows of material and energy in marine food webs. Exams and research paper required. Students cannot receive credit for this course and
OCEA 118 and BIOL 171. BIOL 20C and
CHEM 1C recommended.
A chemical description of the sea; emphasis on the chemical interactions of the oceans with the biosphere, atmosphere, and lithosphere. Topics include biogeochemical cycles and the use of chemical tracers to study oceanic and coastal processes. Course designed for graduate students; available to upper-division science majors. Students may not receive credit for this course and
OCEA 122.
Instructor
Matthew McCarthy, Phoebe Lam
Introduction to organic geochemistry with emphasis on aquatic environments. Explores how non-living organic matter shapes biogeochemical cycles by carrying and sequestering reduced carbon and major nutrients and examines influence of chemical structure and environmental factors on transport and fate of organic molecules. Provides an introduction to organic biomarkers. Students cannot receive credit for this course and OCEA 124.
Instructor
Matthew McCarthy
Biological description of the sea, with emphasis on processes and patterns. Topics include microbial dynamics, phytoplankton and zooplankton production, and ecology of marine food webs. Emphasis placed on understanding how physical, chemical, and geological environment shapes biology and ecology of oceans, including such topics as harmful algal blooms, global estimates of productivity, and effects of humans on environment. Students cannot receive credit for this course and OCEA 130.
Instructor
Raphael Kudela
Covers physical-biogeochemical interactions in the ocean on marine ecosystems, with a special focus on the California Current region. Lectures introduce fundamental processes occurring at local, regional, and basin scales, and describe their complex interplay.
Instructor
Jerome Fiechter
Introduces data analysis methods regularly encountered within the ocean and earth sciences. Topics include: error propagation, least squares analysis, data interpolation methods, empirical orthogonal functions, and Monte Carlo methods applied to problems drawn from oceanographic and earth sciences datasets. Introduces and uses a high-level computing and visualization package, MATLAB. Student project consists of analysis of the student's own dataset.
Cross Listed Courses
EART 260
Instructor
Christopher Edwards, Claudie Beaulieu
Course takes an empirical approach to quantify and explain changes in the Earth system over time. Students learn how to analyze time-series data and answer questions about environmental change and variability. Students acquire the theoretical basis of the statistical approaches, gain experience interpreting and discussing the results, and debate the methods chosen resulting in a critical understanding of the underlying assumptions and limitations of the methods discussed. This is a hands-on class and utilizes a suite of observational datasets and outputs from Earth system models. Students cannot receive credit for this course and
ESCI 167.
Geology of the marine environment. Topics include controls on the types, origin, and distribution of marine sediments; geology of oceanic crust; evolution of continental margins and plate boundaries; and introduction to paleoceanography. Students cannot receive credit for this course and EART102.
Instructor
A. Christina Ravelo, Pratigya Polissar
Reviews the fundamentals of climate dynamics and explores how Earth's environment is a product of the interaction of its components. Uses examples of climate change from historical and geologic records, and from predictions of the future. Recommended for junior, senior, and graduate students in the sciences.
Instructor
A. Christina Ravelo, Pratigya Polissar
Fundamental concepts and ideas that underpin numerical modeling of the ocean. Topics include numerical methods and solutions of partial differential equations (PDEs), ocean circulation, wave dynamics, ocean ecosystem model, and MATLAB programming.
A weekly seminar series covering recent developments in chemical oceanography. Different topics and approaches will be stressed from year to year.
Explores different problems of special interest in biological oceanography. Different topics and approaches will be stressed from year to year.
Instructor
Marilou Sison Mangus
Selected topics in geochemistry. Discussion of theoretical models, different approaches, and recent research. Topics vary from year to year.
A weekly seminar series covering topics in environmental microbiology. Topics vary from year to year, and will include research in ecology, methodology, biochemistry and physiology of bacteria. Emphasis on the role of bacteria in biogeochemical cycling from microzone to global scales, with particular focus in marine systems.
Weekly seminar series covering recent developments in climatic and oceanic change. Different topics and approaches stressed from year to year. Prerequisite(s): interview with instructor prior to first class meeting.
Instructor
Claudie Beaulieu
Weekly seminar series covering topics in physical oceanography as well as biological-physical interactions in the oceans. Different topics and approaches stressed from year to year.
Instructor
Jerome Fiechter, Christopher Edwards, Andrew Moore
Examines recent developments and application of bio-optics to the marine environment, including theory, instrumentation, and remote sensing. Different topics and approaches emphasized from year to year.
Instructor
Raphael Kudela
Examines recent developments in uses of organic geochemistry to trace oceanographic and biogeochemical processes. Focuses on introduction to organic biomarkers, current literature, and evolving applications. Different topics and approaches emphasized from year to year.
Instructor
Matthew McCarthy
Weekly seminar on various topics attended by faculty, graduate, and upper-division undergraduate students.
Quarter offered
Fall, Winter, Spring
For new and/or relatively inexperienced graduate students in pedagogy of ocean sciences. Role and responsibilities of teaching in ocean sciences described and developed. Includes discussions about effective teaching methods; hands-on issues for work in the laboratory; university expectations; and regulations regarding teaching, organizational strategies, time management, and working with instructors and staff.
Instructor
Christopher Edwards
Independent reading, research, and written reports not related to thesis research. Students submit petition to sponsoring agency.
Independent reading, research, and written reports not related to thesis research. Students submit petition to sponsoring agency.
Independent reading, research, and written reports not related to thesis research. Students submit petition to sponsoring agency.
Students submit petition to sponsoring agency.
Students submit petition to sponsoring agency.
Students submit petition to sponsoring agency.
Cross-listed Courses
Introduces fluid motion influenced by rotation. Topics include the Coriolis force, geostrophic flow, potential vorticity, the shallow water model, quasigeostrophic approximation, planetary waves, Ekman theory, thermal wind, models of the large-scale oceanic and atmospheric circulation, and equatorial dynamics. Taught in conjunction with EART 272. Students cannot receive credit for this course and EART 272.
Cross Listed Courses
OCEA 172
Instructor
Christopher Edwards
Introduces fluid motion influenced by rotation. Topics include the Coriolis force, geostrophic flow, potential vorticity, the shallow water model, quasigeostrophic approximation, planetary waves, Ekman theory, thermal wind, models of the large-scale oceanic and atmospheric circulation, and equatorial dynamics. Students cannot receive credit for this course and EART 172.
Cross Listed Courses
OCEA 272
Instructor
Christopher Edwards